Juval Lowy

Making Primitive Objects

Thread Safe

All sorts of things need thread locks. A fairly simple template or two

can do the job.

Multithreading can bring many advan-
tages to an application: the user interface
can remain responsive while processing
goes on in the background; the application
can take advantages of muitiple CPUs,
serve multiple clients, and prioritize tasks.
But these benefits come with a price — you
have to worry about synchronization issues,
deadlocks, reentrancy, and managing the
state of objects that are being accessed on
multiple threads.

The non-OO way to protect resources,
is to have a collection of locks (sema-
phores or critical section objects), that a
thread must acquire before accessing the
resource. If the resource is being
accessed by another thread, the thread
trying to acquire the lock will block. This
solution is very error prone. It relies on
developers having the necessary disci-
pline, it couples the clients of the
resources to the synchronization require-
ments and proper usage (e.g., what lock
goes with what object), and it could
result in deadlock. Changing the sychro-
nization mechanism is difficult.

Juval Lowy is a software architecture man-
ager at KLLA-Tencor, a fortune 500 company.
Juval also manages a program for reusable
software components across the corporation.
He conducts classes on Object-Oriented
Design, Win32 multithreading, COM, and
advanced COM. He can be reached at
juval.lowy@kla-tencor.com.

The object-oriented solution to synchro-
nization problems is conceptually simple —
make the resource or the object itself thread
safe by encapsulating a lock inside the
object it is supposed to protect. For exam-
ple, if you have a member variable in your
class that is a linked list, and multiple
clients on multiple threads can access your
object, you encapsulated the list lock inside
the list. The list has a synchronization lock
inside it as a data member. Every time you
access the list API, say via function
AddHead, the method implementation tries
to acquire the internal lock. If it is available,
the AddHead method locks the object,
accesses the list pointer, adds a new element
to the head, and releases the lock. If the lock
is not available, the call blocks until it is.

However, suppose you have member
variables in your class that are primitive
types, such as int or float. In C++ you
cannot extend primitive types by inheri-
tance. You will end up in the scope of
your class managing locks for those prim-
itive members variables and be suscepti-
ble to the same problems as if you were
programming in C!

The solution I've come up with is a tem-
plate class called SAFETYPE. Figure 1
shows portions of the header file that
defines SAFETYPE. The complete source
files (safetype.h, safetype.inl, and
safetype.cpp) are available on the CUJ
ftp site (see p. 3 for downloading instruc-
tions). I also make the files safelist.h
and safelist.inl available, as an exam-
ple of the classic OO way of making an
object thread safe. SAFETYPE provides syn-
chronization at the atomic level, both for
primitive types and for complex classes
such as CString. SAFETYPE implements
almost all of the C operators. It has only
two member variables — an object of type
T (the type specified by the template para-
meter), and a lock (a Win32 mutex).

The implementation of a given opera-
tor is straightforward. It locks the object,
executes the ‘‘real” operator that is
defined for the T type, and unlocks the
object. Figure 2 shows an example. The
Singlelock method shown simply calls the
Win32 function WaitForSingleObject. If
the operator is a binary, it calls a method
DoubTeLock, which in turn calls
WaitForMultipleObjects

I have implemented SAFETYPE on
Windows, but you should be able to port
it easily to other platforms by providing
your own implementation for the
SingleLock/DoubTelLock methods using
the target platform’s synchronization
support.

Using SAFETYPEs

Using SAFETYPE is just like using the
original type, assuming the original type
has all the operators that you want to call
defined. Just declare the SAFETYPE variable
and use it:

SAFETYPE<int> nValue;
int nBug;

nValue +=3; //This is thread safe
nBug +=3; //This is not thread safe

By making all your class data members
thread safe, you can automatically elimi-
nate synchronization problems. This is a
much more simplified programing model
than the non-OO way presented above.
Figure 3 shows an example of using
SAFETYPE in a C++ object that is being
accessed by multiple threads. Note that all
the data members are safe.

March 2000

e C/C++ Users Journal ® www.cuj.com e

85

Making Primitive Objects Thread Safe

Summary

It is not possible to make access to primitive types thread safe
the way it is typically done with user-defined types in object-ori-
ented programs. With user-defined types it is fairly easy to encap-
sulate a lock within the object to be protected. This is not possible

Figure 1: The SAFETYPE template class

template<class T>
class SAFETYPE
{
public:
SAFETYPE();
SAFETYPE(const SAFETYPE<T>& SAFETYPEsrc);
SAFETYPE(const T& t);

// member methods for atomic lTock/unlock
void Singlelock()const;
void SingleUnlock()const;

// operators

operator T() const;

const SAFETYPE<T>&

operator=(const SAFETYPEXT>& SAFETYPEsrc);
const SAFETYPE<T>&

operator+=(const SAFETYPE<T>& SAFETYPEsrc);
const SAFETYPEXT>&

operator-=(const SAFETYPE<T>& SAFETYPEsrc);

/* the rest of the C operators ... */
protected:
HANDLE m_hMutex; // access protection
Tm_t; /] The data
s
— End of Figure —

CodeHMapper
o For Windows ™ 95/98/N{

C/C++ source code analyzing and automatic
documentation building and export (RTF)

hefore!

Class hierarchy configurable scheme and

= image export

() AN

Class browser for fast code navigation

Project management for complicated file structures
Automatic code change recognition

Supports ANS| C/C++

User-definable for non-ANSI C/C++

Ready to use with MS Visual C++ ™,
Borland C++ Builder ™, UNIX C++

User templates support % z

E-mail now to othitech@techno-link.com
for your FREE evaluation copy

o ®
{Q Orbilech

Systerm Graphics
Making the world visible

1t's never been o ea

Product info:
Phone: (+359 2) 971-36-26
Fax: (+359 2) 971-14-89
e-mail: orbitech@techno-link.com ‘

86 e C/C++ Users Journal e www.cuj.com e

Juval Lowy

with primitive types. The SAFETYPE template class provides a
convenient way to make access to primitive objects safe in a mul-
tithreading environment. You can use SAFETYPE on complex user-
defined types as well.

Figure 2: Implementation of the SAFETYPE operator- for
unary negation

template<class T>
const SAFETYPEXT> SAFETYPEXT>::operator-()
{

Tt

SingleLock();

T==m_t;

SingleUnlock();

return t;

— End of Figure —

Figure 3: Using SAFETYPE in a C++ class

class CDog
{

public:
void Fetch();
void Bark()
BOOL HasShots();
protected:
SAFETYPE<CString> m_sName;
SAFETYPE<BOOL>

m_bHasShots;

— End of Figure —

IDA Pro
Interactive
Disassembler

YK Problem ? Lost nte! 80x86, AVR. 80,
: 7380, PIC, 8051, 860,
Source ? time CAN

H8, 6502, 680x, 68K,
I Mips, SH-3, SH-4, PPC,
be reversed |

TMS320C6X....

ebx, eax

ebx, 2

ebx. eax
ida 048 ecx, off_288CC[ebx»2]
UinCreateMayQuene X
::’:::::::“_ﬁ“‘ esi, dword ptr ds: $2488h
Uinlnitislize g

MinMescage Box ; UZO81X (%s): bad optype”

of foet a081xSEadOptype

YinTerainate
DosDeuCont iy
DosExic
DosClase

Doz 0pen
DosUrite
DosExitLiat
Dostllochen
DosFraetien

~ Download our Demo
- www.datarescue.com

March 2000

